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Abstract. Numerical evaluation of functional integrals usually involves a finite (L-slice)
discretization of the imaginary-time axis. In the auxiliary-field method, the L-slice approximant
to the density matrix can be evaluated as a function of inverse temperature at any finite L as
ρ̂L(β) = [ρ̂1(β/L)]L, if the density matrix ρ̂1(β) in the static approximation is known. We
investigate the convergence of the partition function ZL(β) ≡ Tr ρ̂L(β), the internal energy and
the density of states gL(E) (the inverse Laplace transform of ZL), as L → ∞. For the simple
harmonic oscillator, gL(E) is a normalized truncated Fourier series for the exact density of states.
When the auxiliary-field approach is applied to spin systems, approximants to the density of states
and heat capacity can be negative. Approximants to the density matrix for a spin- 1

2 dimer are
found in closed form for all L by appending a self-interaction to the divergent Gaussian integral
and analytically continuing to zero self-interaction. Because of this continuation, the coefficient of
the singlet projector in the approximate density matrix can be negative. For a spin dimer, ZL is an
even function of the coupling constant for L < 3: ferromagnetic and antiferromagnetic coupling
can be distinguished only for L � 3, where a Berry phase appears in the functional integral. At
any non-zero temperature, the exact partition function is recovered as L → ∞.

1. Introduction

Functional integration is a long-established technique in quantum mechanics [1]. More
recently, advances in computing power have allowed direct Monte Carlo evaluation of such
integrals for many-body systems [2]. Such algorithms are often based on an auxiliary-field
functional integral, which is used in areas as diverse as strongly correlated electron systems
[3], spin systems [4] and nuclear structure [5]. The statistical mechanics of a many-body
system on a d-dimensional lattice is mapped onto that of a classical field u(r, τ ) (the auxiliary
field) in a (d + 1)-dimensional slab of extension 0 � τ � β = 1/kT in the imaginary
time dimension. The many-body system reduces to a system of non-interacting particles
moving in a time-dependent auxiliary field. To evaluate the integral over all time evolutions,
it is necessary to sample the field at a finite number L of imaginary times—not necessarily
uniformly or deterministically spaced—and extrapolate to the continuum limit L → ∞. The
L = 1, or static, approximation maps the system onto classical statistical mechanics in d
dimensions. The ground state in this approximation for many-fermion systems is a single
Slater determinant, typically corresponding to the Hartree–Fock solution; for spin models
it is the mean-field ground state. For L > 2, closed paths may enclose an area, breaking
time-reversal invariance and thereby contributing a sign or Berry phase factor to the integral.
This factor has some important consequences. It restores quantization: correlation between
phases on neighbouring sites discriminates between the classically equivalent ferromagnets
and unfrustrated antiferromagnets [6]. The large-L limit must also restore symmetry if the
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auxiliary fields do not have the full local symmetry (such as in the Ising decomposition of
the Hubbard model) [7]. On the other hand, the resulting rapid oscillation of the integrand
(the notorious sign problem) seriously restricts convergence of Monte Carlo simulations at low
temperatures. The present author has shown how the distributions of the auxiliary fields tend to
the appropriate quantum distribution (the Wigner function) with increasingL, while numerical
convergence becomes increasingly problematical [8]. For repulsive interactions, an imaginary
auxiliary field is required, resulting in a sign problem even in the static approximation.

Since numerical studies of the auxiliary-field functional integral are frequently hampered
by the sign problem, it is of value to investigate toy models in which the finite-L approximants
may be evaluated in closed form. This paper is a framework for discussion of these
approximants, specifically for simple spin systems. This differs from finite-size scaling
in real space; while a lattice truncated in real space is a cluster, and therefore physically
realizable, the time-discretized system may possess unphysical properties vanishing only
in the continuum limit. Indeed, in a number of examples the static approximants to the
heat capacity and density of states are not positive-definite [9]. The static approximation
(and other finite-L approximations) give a saddle-point approximation, usually a variational
overestimate, of the ground state energy, but are correct in the high-temperature limit. The
heat capacity shows competition between the recovery of quantum fluctuations, which give a
negative contribution at low temperatures, and true thermal fluctuations, which give a positive
contribution (exponentially small if there is a gap).

To motivate this work, at this point we recall the path integral of a simple harmonic
oscillator in the frequency domain (which does not suffer from the above problem). The
partition function is [1]

Z(β) =
∫

Dx exp

(
−
∫ β

0
dτ

[
m

2h̄2

(
dx

dτ

)2

+
1

2
mω2x2

])
. (1)

We impose a frequency cut-off, restricting the function space to paths with L Matsubara
frequencies (L odd):

x(τ) =
(L−1)/2∑
n=(1−L)/2

ane
2π inkT τ . (2)

The resulting Lth approximant to the partition function is [10, 11]

ZL(β) = 1

βh̄ω

(L−1)/2∏
n=1

[
1 +

(
βh̄ω

2πn

)2
]−1

, (3)

with poles at β = 2π in/h̄ω, (1 − L)/2 � n � (L− 1)/2. The inverse Laplace transform of
ZL gives the Lth approximant to the density of states:

gL(E) = 2L−1 ([(L− 1)/2]!)2

(L− 1)!h̄ω
sinL−1(πE/h̄ω)�(E) (4)

where � is the Heaviside step function. The approximants have the following limits:

g1(E) = �(E) (5)

lim
L→∞

gL(E) →
∞∑
n=0

δ
(
E − (

n + 1
2

)
h̄ω
)

(6)

gL(E) ∼ EL−1, E → 0+. (7)
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Figure 1. Internal energy for simple harmonic oscillator showing approximants with L =
1, 3, 5, 7, 9, 11, 13 Matsubara frequencies converging to the exact (bold) energy.

In particular, equation (6) verifies the emergence of the correct density of states in the continuum
limit. Figure 1 shows the convergence of the internal energy UL, obtained from ZL (3), to
the exact result (h̄ω/2) coth(h̄ω/2kT ) for any fixed positive temperature. The ground state
energy vanishes for allL, and the low-temperature heat capacity isLk; the zero-point energy is
recovered with increasing temperature. In this case the finite-L approximants to the partition
function represent physically realizable systems (ensembles of harmonic oscillators of the
same frequency with a distribution of energy shifts). This is to be compared with the results
to be shown in figures 2 and 3, which do not exhibit this behaviour.

Of more relevance to the present paper would be a time discretization of the path integral
(1). The resulting approximants to the partition function have a similar form to (3), although
the poles are non-uniformly spaced [10, 12, 13]. The approximant to the density of states has
a less transparent form than (4), being quasiperiodic rather than periodic, but still converges
with L in any finite energy interval.

Section 2 presents the auxiliary field formalism used in this work. Two case studies of toy
spin models in section 3 show how truncation of the functional integral gives a sequence of
approximants which, although they converge to the correct value, do not themselves represent
any physical system. Section 4 discusses possible wider applicability of the features of these
models.

2. Theory

The general Hamiltonian with two-body interactions is of the form

Ĥ = −
N∑
µ=1

(KµÂµ +K∗
µÂ

†
µ)−

N∑
µ,ν=1

JµνÂ
†
µÂν. (8)

Here Â = {Âµ, µ = 1, . . . , N} are single-particle operators generating a closed algebra;
they will be spin operators in the examples studied here, but might, for example, represent
hopping or pairing operators, c†

i↑cj↑ or c†
k↑c

†
k↓. To avoid notational complications, we assume
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the operators to be Hermitian. This can be achieved by changing the basis to Â†
µ + Âµ and

i(Â†
µ − Âµ). To obtain the functional integral, we separate the density matrix into L time

slices,

ρ̂(β) ≡ e−βĤ = (
e−βĤ/L)L (9)

and apply the Hubbard–Stratonovich transformation to each time slice:

exp(−βĤ/L) =
∫

dNu exp(−βu · J−1u/4L) exp(β(K + u) · Â/L)√
det(4πJL/β)

+ O(L−2). (10)

This is a formal expression, convergent only for a positive interaction matrix J. In general, one
needs to reduce the matrix into positive, zero and negative blocks and treat each separately,
omitting the auxiliary fields in the zero block and using an imaginary auxiliary field in the
negative block [14]. An alternative is to add a multiple of a positive matrix to J. In the latter
case, this addition may correspond to a constant or one-body term, which can be absorbed into
K, at the cost of introducing a fictitious self-interaction; the functional integration will have
to work harder to remove this self-interaction. The coefficient of the additional term may be
analytically continued or extrapolated to zero [15]; it is this approach we shall use here. The
Lth approximant to the density matrix is then

ρ̂L(β) =
L∏
n=1

∫
dNun exp(−βun · J−1un/4L) exp(β(K + un) · Â/L)√

[det(4πLJ/β)]
. (11)

This can be obtained from the density matrix in the static approximation

ρ̂L(β) = [ρ̂1(β/L)]
L (12)

and tends to the exact density matrix as L → ∞. We shall subsequently refer to the
Lth approximant of the ‘function’ (obtained by replacing the exact density matrix with its
approximant (11)) as the L-‘function’.

The L-partition function is

ZL(β) = Tr ρ̂L(β). (13)

Approximants to the internal energy may be computed directly from approximants to the
partition function,

UL(β) = − ∂

∂β
lnZL(β), (14)

which is an average of the one-body (auxiliary-field) Hamiltonian:

UL(β) = − 1
2LkT +

(
Tr

{∫ L∏
n=1

[
e−β(un·J−1un/4−(K+un)·Â)/L dNun

]

×[u1 · J−1u1/4 − (K + u1) · Â
]})

×
(

Tr

{∫ L∏
n=1

[
e−β(un·J−1un/4−(K+un)·Â)/L dNun

]})−1

. (15)

This will therefore tend to the expectation of the auxiliary field Hamiltonian at low
temperatures, typically a mean-field energy.
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Since it is difficult to extract the partition function from importance-sampled Monte Carlo
calculations, the form (14) is impractical. It is possible to calculate the energy as a thermal
average of the true Hamiltonian

ŨL(β) = ZL(β)
−1 Tr[ρ̂L(β)Ĥ ]. (16)

This is a variational approximation to the ground state energy, which might be expected to be
bounded below by the ground state energy. The example in section 3.2 below shows that this
natural assumption is not always justified for these approximants. The forms (14) and (16)
are not equivalent; the latter is usually a better approximation. Heat capacities will be defined
as temperature derivatives of these energies, although these may be calculated in other ways
[16].

The partition function is the Laplace transform of the density of states gL(E). The L-
density of states, gL(E), is defined implicitly by

ZL(β) =
∫ ∞

−∞
e−βEgL(E) dE. (17)

The spectrum is bounded below but, if necessary, the origin of E can be shifted to ensure that
gL(E) = 0 for E < 0. Such densities of states have been studied in the nuclear shell model
[17], although in that case the partition function is derived by integration of the measured
energy (16) in (14) and the inverse Laplace transform is computed within the saddle-point
approximation (which is appropriate for a large density of states). The propagator may also be
determined by a similar inverse transform of the density matrix. TheL-partition functionZL(β)
converges pointwise to the partition function Z(β) as L → ∞ at any non-zero temperature.
The L-density of states converges to the true density of states in the distributional sense: for
any sufficiently smooth function f ,

lim
L→∞

∫ ∞

−∞
f (E)gL(E) dE =

∫ ∞

−∞
f (E)g(E) dE. (18)

There are now two possibilities. If
∫∞
−∞ f (E)gL(E) dE is positive for all positive test functions

f (E), the heat capacity is non-negative at all temperatures and we say that the approximant is
physical; there can exist a Hermitian Hamiltonian with that thermodynamics. This is evidently
the case for the harmonic oscillator discussed in section 1, although this is not related to the
auxiliary-field functional integral. If the density of states is non-positive, then we say that the
approximant is unphysical. The spin models in the next section provide examples.

3. Examples

3.1. Single spin

A single spin s with self-interaction,

Ĥ = −J Ŝ · Ŝ (19)

may seem a trivial case, although a similar situation would arise in the study of a Hubbard
model with degenerate bands and strong Hund’s rule coupling. The static approximation to
this has been discussed earlier [9]. Although a scalar auxiliary field does not suffer from this
problem, it violates rotational invariance [18]. Clearly, the exact partition function, internal
energy and density of states are

Z(β) = (2s + 1) exp(βJ s(s + 1)) (20)

U(β) = −J s(s + 1) (21)

g(E) = (2s + 1)δ(E + J s(s + 1)). (22)
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Figure 2. Internal energy for single spin 1
2 showing approximants with L = 1 (top curve) to 10

(bottom curve) converging to the exact (bold) energy.

Applying the Hubbard–Stratonovich transformation gives the L = 1 density matrix as

ρ̂1 = (β/4πJ )3/2
∫

d3u exp(−βu2/4J ) exp(βu · Ŝ). (23)

This is rotationally invariant, and therefore a multiple of the unit matrix. The partition function
in the static approximation follows from taking the trace of the exponential and performing
the Gaussian integrals [9], giving

ρ̂1(β) = Z1(β)

2s + 1
= 1

2s + 1

s∑
m=−s

(1 + 2m2βJ ) em
2βJ . (24)

The L-partition function is then

ZL(β) = (2s + 1)

(
1

2s + 1

s∑
m=−s

(1 + 2m2βJ/L) em
2βJ/L

)L
; (25)

this tends to the correct limit (20) as L → ∞. The L-energy (14) is

UL(β) = −J
∑s

m=−s(3m
2 + 2m4βJ/L) em

2βJ/L∑s
m=−s(1 + 2m2βJ/L) em2βJ/L

= U1(β/L). (26)

This is a monotonically decreasing function of temperature, falling from the saddle-point value
of −J s2 at T = 0 to the correct value of −J s(s + 1) at high temperatures. Figure 2 shows the
energy for spin 1

2 . The thermal average of the Hamiltonian (16) is trivially ŨL(β) = −J s(s+1)
at all temperatures.

This negative heat capacity implies a non-physical density of states. For spin 1
2 , the

approximants to the partition function are

ZL(β) = 2(1 + βJ/2L)LeβJ/4, (27)
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converging to 2e3βJ/4 as L → ∞. Its inverse Laplace transform is the L-density of states

gL(E) = 2

(
1 +

J

2L

d

dE

)L
δ(E + J/4) (28)

which involves L derivatives of the delta function at the saddle-point energy. The formal limit

lim
L→∞

gL(E) = 2 exp

(
1 +

J

2

d

dE

)
δ(E + J/4) = 2δ(E + 3J/4) (29)

is correct when applied to a sufficiently good test function (such as a polynomial). In this
way expectation values are correct to O(L−1), even though the only spectral point is at the
classical rather than the quantum ground state energy, and is in error by O(1). For larger spins,
this single singularity becomes a discrete spectrum of singularities between E = −J s2 and
E = −J/4 (half-odd-integer spin) or E = 0 (integer spin), all higher than the true energy.

There is a suggestive but probably fortuitous resemblance between the partition function
for spin 1

2 and the q-Laplace transform, recently introduced in the context of non-extensive
statistical mechanics [19]. One version of this q-Laplace transform defines a q-partition
function as

Zq(β) =
∫ ∞

0
g(E)[1 + (1 − q)βE]1/(1−q) dE, (30)

where q corresponds to 1−1/L. Negative heat capacities are found in this theory [20] (although
the correspondence between Zq and thermodynamic potentials differs from that in standard
thermodynamics).

3.2. Spin- 1
2 dimer

The highly non-physical behaviour of the approximants to the heat capacity above stems from
the emergence of the quantum fluctuations (a negative energy contribution) with increasing
temperature. For a single spin in zero field there are no compensating thermal fluctuations.
We therefore investigate the spin- 1

2 dimer,

Ĥ = −J ′(Ŝ1 · Ŝ1 + Ŝ2 · Ŝ2)− 2J Ŝ1 · Ŝ2. (31)

The self-interaction is added to ensure convergence. The integral (10) only converges for
J ′ > |J |, but is analytic in the matrix elements, allowing continuation to J ′ = 0. Manipulation
of the Gaussian integrals eventually gives the L-density matrix as

ρ̂L(β) =
[(

5

6
− J ′2

6J 2
+
β(J + J ′)2

3LJ

)
eβJ/2L +

(
1

6
+
J ′2

6J 2
− β(J − J ′)2

6LJ

)
e−βJ/2L

]L
eβJ

′/2P̂1

+

[(
−1

2
+
J ′2

2J 2

)
eβJ/2L +

(
3

2
− J ′2

2J 2
− β(J − J ′)2

2LJ

)
e−βJ/2L

]L
eβJ

′/2P̂0.

(32)

This is an entire function of both J and J ′. Taking J → 0 gives the direct product of two
one-particle density matrices (25). More importantly, we can remove the interaction by setting
J ′ = 0 to obtain

ρ̂L(β) =
[(

5

6
+
βJ

3L

)
eβJ/2L +

(
1

6
− βJ

6L

)
e−βJ/2L

]L
P̂1

+

[
−1

2
eβJ/2L +

(
3

2
− βJ

2L

)
e−βJ/2L

]L
P̂0 (33)
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Figure 3. Lth approximant to the energy for the spin- 1
2 dimer with (a) ferromagnetic and (b)

antiferromagnetic coupling. The bold curve is the exact energy, the full curves areUL, the derivative
of lnZL (14), and the broken curves are ŨL, the thermal average of the Hamiltonian (16). Curves
shown for L = 1, . . . , 4, annotated by L. The energies U1 and Ũ1 are coincident.

where P̂1 and P̂0 are projections onto the triplet and singlet subspace, respectively. In the
large-L limit we recover the correct density matrix:

lim
L→∞

ρ̂L(β) = lim
L→∞

[(
1 +

βJ

2L

)L
P̂1 +

(
1 − 3βJ

2L

)L
P̂0

]
(34)

= eβJ/2P̂1 + e−3βJ/2P̂0. (35)

It is not possible to distinguish ferromagnetic from antiferromagnetic coupling in the
thermodynamics for L < 3, where the paths do not enclose an area. Thus the L-partition
function is an even function of J for L = 1, 2. A high-temperature expansion (Maple) verifies
this and shows that the second moment of the density of states is correct for all L:

ZL(β) = 4 +
3(βJ )2

2
− (L− 1)(L− 2)(βJ )3

2L2
+
(21L3 − 72L2 + 116L− 60)(βJ )4

96L3
+ · · · .

(36)
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Figure 3 shows approximants to the internal energy for ferromagnetic and
antiferromagnetic coupling. UL, as calculated from the partition function (14), is always equal
to its mean-field value −|J |/2 at T = 0. This is the correct energy only for the ferromagnet.
U1 and U2, as already discussed, cannot distinguish the ferromagnet and antiferromagnet.
The L-heat capacity is negative at low temperatures and positive at higher temperatures.
ŨL, as calculated from the thermal average of the Hamiltonian (16) is, as expected, a better
approximation than UL for L > 1, giving improved estimates of the antiferromagnetic ground
state energy, although it still shows a small region of negative L-heat capacity.

One at first surprising feature is that in the ferromagnet ŨL falls below its variational
bound −J/2 for odd L. This is due to the unphysical form of the L-density matrix itself, and
not just to its temperature dependence. As a result of the analytic continuation to J ′ = 0, the
coefficient of the singlet projector in (33) is negative at low temperature for oddL, representing
a negative weight for the singlet state. The coefficients of both projectors are always positive
when J ′ > |J |, the parameter region for which the integral (10) converges. Direct application
of the Hubbard–Stratonovich transformation to the Hamiltonian for J ′ = 0 would require an
imaginary field coupled to Ŝ1 − Ŝ2, leading to a similar non-classical weight.

The L-density of states is again non-physical and is symmetric for L < 3 for the reasons
discussed above; there are L + 1 singularities in −J/2 � E � J/2, involving L derivatives of
the delta function, for example

g1(E) = 2 (δ(E + J/2) + δ(E − J/2)) + J
(
δ′(E + J/2)− δ′(E − J/2)

)
. (37)

For large L, we obtain the correct result (the limit to be understood in the distributional sense)

lim
L→∞

gL(E) = 3δ(E + J/2) + δ(E − 3J/2). (38)

4. Discussion

In all of the above, the approximants to thermodynamic functions have an error of O(L−1)

at any fixed non-zero temperature. In practice, more careful Trotter decompositions and
truncations of the density matrix may accelerate the convergence in Monte Carlo simulations
[16, 21, 22]. The models discussed, being analytically soluble for all discretizations, are
not representative of real applications but may provide a useful test of methods. The main
outcome of this work is a pointer to possible difficulties in the use of finite discretizations:
underestimated (or negative) heat capacities and non-physical spectral functions. The effects
might be largest in strongly correlated systems, or systems with an excitation gap, where the
lowest auxiliary field state is a poor approximation to the true ground state. In that case the
density of states must suffer substantial distortion to provide the correct thermodynamics; the
true ground state energy lies outside the approximate spectrum. More accurate energies are
obtained from the thermal average of the Hamiltonian than from the derivative of the partition
function.

This work has been in some sense complementary to the sign problem, which can arise
for L � 3 or for repulsive interactions [14]: the weight in the functional integral (10) need
not be positive, although the physical quantities are correctly obtained. This will arise if the
correlations to be calculated are incompatible with a positive distribution for the auxiliary
fields [8]. In this case low-L approximations lead to unphysical results, characterized by non-
positive distributions in the energy domain. The examples discussed are those with the most
acute sign problem: the auxiliary field couples to operators (such as spin components) whose
equal-time commutators do not vanish.
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